Kasia <span>A.</span> Rejniak
Researcher

Kasia A. Rejniak

Academic Rank: Assistant Member

View Lab Page

Overview

Discipline

    • Integrated Mathematical Oncology
    • Cancer Biology and Evolution Program
    • Cancer Imaging and Technology
    • Melanoma Research Center of Excellence
    • Cancer Chemoprevention Research Interest Group

Education & Training

    • University of Gdansk, Poland, MSc - Numerical methods and Computer Science
    • Tulane University, MSc - Mathematics
    • Tulane University, PhD - Applied Mathematics
    • Ohio State University, Mathematical Biosciences Institute, NSF Postdoctoral Fellow
Research

I have developed a general computational model (called IBCell model) that can represent accurately the structure of various soft tissues and mechanical transformations occurring during the tissue development and maintenance. This model has been applied to simulate the formation of abnormal folds in the human trophoblast bilayer, the development of epithelial cysts and ducts, and the growth of solid tumors, tumoral clones and various patterns of ductal carcinoma in situ. This model is ideally suited to represent small tissue portions, such as those taken from biopsy samples or those grown experimentally in the culture medium, and to simulate cell responses to various environmental factors and treatment protocols. My ultimate research goal is to integrate the IBCell model with the experimental and clinical data to provide a tool for simulating the growth of tumor cells in different tissues and under various external conditions. The model can be adjusted to represent distinct biomechanical properties of the tissue under consideration and can be extended to include distinct biochemical properties of the host cells, therefore it shows a promise in providing a supporting evaluation of the tumorigenic potential of the collected cell samples and in testing in silico various protocols for patient-specific treatment.

Publications

  • Shah AB, Rejniak KA, Gevertz JL. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Math Biosci Eng. 2016 Dec;13(6):1185-1206. Pubmedid: 27775375. Pmcid: PMC5113823.
  • Rejniak KA. Circulating Tumor Cells: When a Solid Tumor Meets a Fluid Microenvironment. Adv Exp Med Biol. 2016;936:93-106. Pubmedid: 27739044. Pmcid: PMC5113997.
  • Pérez-Velázquez J, Gevertz JL, Karolak A, Rejniak KA. Microenvironmental Niches and Sanctuaries: A Route to Acquired Resistance. Adv Exp Med Biol. 2016;936:149-164. Pubmedid: 27739047. Pmcid: PMC5113820.
  • Rejniak KA, Lloyd MC, Reed DR, Bui MM. Diagnostic assessment of osteosarcoma chemoresistance based on Virtual Clinical Trials. Med Hypotheses. 2015 Sep;85(3):348-354. Pubmedid: 26130106. Pmcid: PMC4549200.
  • Lloyd MC, Rejniak KA, Brown JS, Gatenby RA, Minor ES, Bui MM. Pathology to enhance precision medicine in oncology: lessons from landscape ecology. Adv Anat Pathol. 2015 Jul;22(4):267-272. Pubmedid: 26050264. Pmcid: PMC4729443.
  • Wojtkowiak JW, Cornnell HC, Matsumoto S, Saito K, Takakusagi Y, Dutta P, Kim M, Zhang X, Leos R, Bailey KM, Martinez G, Lloyd MC, Weber C, Mitchell JB, Lynch RM, Baker AF, Gatenby RA, Rejniak KA, Hart C, Krishna MC, Gillies RJ. Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302. Cancer Metab. 2015 Jan;3(1):2. Pubmedid: 25635223. Pmcid: PMC4310189.
  • Kim M, Rejniak KA. Mechanical aspects of microtubule bundling in taxane-treated circulating tumor cells. Biophys J. 2014 Sep;107(5):1236-1246. Pubmedid: 25185559. Pmcid: PMC4156678.
  • Kim M, Reed D, Rejniak KA. The formation of tight tumor clusters affects the efficacy of cell cycle inhibitors: a hybrid model study. J Theor Biol. 2014 Jul;352:31-50. Pubmedid: 24607745. Pmcid: PMC5483857.
  • Enderling H, Rejniak KA. Simulating cancer: computational models in oncology. Front Oncol. 2013 Sep;3:233. Pubmedid: 24062986. Pmcid: PMC3772565.
  • Rejniak KA. Homeostatic imbalance in epithelial ducts and its role in carcinogenesis. Scientifica (Cairo). 2013 Nov;2012:132978. Pubmedid: 24278670. Pmcid: PMC3820568.
  • Kim M, Gillies RJ, Rejniak KA. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front Oncol. 2013 Nov;3:278. Pubmedid: 24303366. Pmcid: PMC3831268.
  • Rejniak KA, Estrella V, Chen T, Cohen AS, Lloyd MC, Morse DL. The role of tumor tissue architecture in treatment penetration and efficacy: an integrative study. Front Oncol. 2013 May;3:111. Pubmedid: 23717812. Pmcid: PMC3650652.
  • Rejniak KA. Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model. Front Oncol. 2012 Sep;2:111. Pubmedid: 23024961. Pmcid: PMC3444760.
  • Rejniak KA, Anderson AR. State of the art in computational modelling of cancer. Math Med Biol. 2012 Mar;29(1):1-2. Pubmedid: 22200587.
  • Rejniak KA, Quaranta V, Anderson AR. Computational investigation of intrinsic and extrinsic mechanisms underlying the formation of carcinoma. Math Med Biol. 2012 Mar;29(1):67-84. Pubmedid: 21106672. Pmcid: PMC3499074.
  • Kam Y, Rejniak KA, Anderson AR. Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J Cell Physiol. 2012 Feb;227(2):431-438. Pubmedid: 21465465. Pmcid: PMC3687536.
  • Rejniak KA, Wang SE, Bryce NS, Chang H, Parvin B, Jourquin J, Estrada L, Gray JW, Arteaga CL, Weaver AM, Quaranta V, Anderson AR. Linking changes in epithelial morphogenesis to cancer mutations using computational modeling. PLoS Comput Biol. 2010 Aug;6(8). Pubmedid: 20865159. Pmcid: PMC2928778.
  • Rejniak KA, McCawley LJ. Current trends in mathematical modeling of tumor-microenvironment interactions: a survey of tools and applications. Exp Biol Med (Maywood). 2010 Apr;235(4):411-423. Pubmedid: 20407073.
  • Anderson AR, Rejniak KA, Gerlee P, Quaranta V. Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol. 2009 Apr;58(4-5):579-624. Pubmedid: 18839176.
  • Quaranta V, Rejniak KA, Gerlee P, Anderson AR. Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models. Semin Cancer Biol. 2008 Oct;18(5):338-348. Pubmedid: 18524624. Pmcid: PMC3789515.
  • Rejniak KA, Anderson AR. A computational study of the development of epithelial acini: II. Necessary conditions for structure and lumen stability. Bull Math Biol. 2008 Jul;70(5):1450-1479. Pubmedid: 18401665. Pmcid: PMC3812684.
  • Rejniak K, Anderson A. A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bull Math Biol. 2008 Apr;70(3):677-712. Pubmedid: 18188652. Pmcid: PMC3812693.
  • Rejniak K. An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol. 2007 Jul;247(1):186-204. Pubmedid: 17416390.
  • Anderson A, Rejniak K, Gerlee P, Quaranta V. Modelling of cancer growth, evolution and invasion: bridging scales and models. Math Mod Nat Phenom. 2007;2:1-29.
  • Rejniak K, Dillon R. A single cell based model of the ductal tumour microarchitecture. Computational & Mathematical Methods In Medicine. 2007;8(1):51-69.
  • Rejniak K. A single cell approach in modeling the dynamics of tumor microregions. Mathematical Biosciences & Engineering. 2005;2(3):643-655.
  • Rejniak K, Kliman H, Fauci L. A computational model of the mechanics of growth of the villous trophoblast bilayer. Bull Math Biol. 2004 Mar;66(2):199-232. Pubmedid: 14871565.
  • Popesco M, Frostholm A, Rejniak K, Rotter A. Digital transcriptome analysis in the aging cerebellum. Ann N Y Acad Sci. 2004 Jun;1019:58-63. Pubmedid: 15246995.
  • Rejniak KA, Anderson AR. Hybrid models of tumor growth. Wiley Interdiscip Rev Syst Biol Med. 3(1):115-125. Pubmedid: 21064037. Pmcid: PMC3057876.