New Frontiers in Urologic Oncology: Revisiting the Role of Percutaneous Renal Biopsies in Kidney Cancer: When, Why and How?

Saturday, November 4, 2017: 8:15-8:35 am

Nainesh Parikh, MD, MBA
Assistant Member, Department of Interventional Radiology
Moffitt Cancer Center
Disclosures

None
Learning Objectives

• Current indications for percutaneous biopsy
• Pre and post-procedural care and technique
• Complications
• Accuracy of percutaneous biopsy
• Prior and emerging indications for percutaneous biopsy
Small Renal Masses

- Increased cross-sectional imaging in the past decades has brought with it increased diagnosis of incidental small renal masses
 - Up to 60%\(^1\) of RCC is diagnosed incidentally
 - Increased incidence of RCC as well as benign renal masses
 - Larger the mass, higher the likelihood of malignancy
 - Up to 30% of masses < 2cm are benign\(^2\)
 - Discordance of imaging and surgical pathology
 - 8-27% of surgically resected solid renal masses were benign\(^3\)
 - Does biopsy help?

\(^1\) Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 2006;98(18):1331–1334

\(^3\) Beland MD, Mayo-Smith WW, Dupuy DE, Cronan JJ, DeLeiris RA. Diagnostic yield of 58 consecutive imaging guided biopsies of solid renal masses: should we biopsy all that are indeterminate. AJR Am J Roentgenol 2007; 188: 7927. doi:10.2214/AJR.06.0356. PMid:17312070
Current Biopsy Climate

• 2009 AUA survey of 759 urologists1 regarding small renal masses
 • Few respondents selected biopsy for work-up, except:
 • Suspicion of non-RCC mass
 • Surgical co-morbidities
 • Increased patient age
 • Intention to conduct active surveillance
• Why biopsy is not favored?
 • Perceived risk of biopsy
 • Hemorrhage and tract seeding
 • Question of ability to obtain final diagnosis
 • Benign vs. malignant
 • Malignant sub-typing, Fuhrman grade

Biopsy Technique

• Pre-procedure
 • INR < 1.5
 • Platelets > 50k
 • ASA/Plavix: 5 day hold*
 • ? necessary
 • Heparin/Lovenox: 24 hour hold
 • No Abx
 • Moderate sedation with Versed and Fentanyl

• Post-procedure
 • Monitor for 4 hours
 • Restart anticoagulation after 24 hours
Biopsy Technique

• Guidance
 • CT almost exclusively
 • Usually no IV contrast administered
• Needle choice
 • Coaxial 18 or 20 G (typically 18)
 • Improves biopsy success rate while decreasing procedure time
 • ± 22-25G FNA (value in cystic lesions?)
 • 2-3 of each, depending on expected underlying subtype
• Cytotechnologist on site to confirm adequacy of specimen
• Gelfoam for persistent back-bleeding

Biopsy Technique
Biopsy Risk

• Biopsy Risk
 • Bleeding/vascular injury\(^1\)
 • Up to 2% risk of major bleeding
 • 0.4% required embolization
 • In interventional literature, “complication” rate of \(\sim 1\%\)^2
 • Typically self-limited subcapsular or perinephric hematoma

• Seeding
 • Case reports in literature\(^3\) but no cases reported when using co-axial technique

Needle Size and Biopsy Risk

Diagnostic Performance

<table>
<thead>
<tr>
<th>Authors</th>
<th>No renal biopsy</th>
<th>Mean tumour size (mm)</th>
<th>Overall % nondiagnostic biopsy</th>
<th>% solid lesion</th>
<th>% non diagnostic solid lesion</th>
<th>% cystic lesion</th>
<th>% nondiagnostic cystic lesion</th>
<th>% benign lesion</th>
<th>% malignant lesion</th>
<th>Accuracy for malignancy</th>
<th>Accuracy for RCC subtype</th>
<th>Accuracy for Fuhrman grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmidbauer et al</td>
<td>78</td>
<td>40</td>
<td>3</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>21</td>
<td>79</td>
<td>100</td>
<td>98</td>
<td>NR</td>
</tr>
<tr>
<td>Neuzillet et al</td>
<td>88</td>
<td>28</td>
<td>3.4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>15.9</td>
<td>84.1</td>
<td>92</td>
<td>92</td>
<td>69.8</td>
</tr>
<tr>
<td>Lebret et al</td>
<td>119</td>
<td>33</td>
<td>21</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>25.5</td>
<td>84.5</td>
<td>86</td>
<td>86</td>
<td>74</td>
</tr>
<tr>
<td>Maurek et al</td>
<td>152</td>
<td>41</td>
<td>4</td>
<td>88.8</td>
<td>1.5</td>
<td>11.2</td>
<td>23.5</td>
<td>42</td>
<td>58</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Volpe et al</td>
<td>100</td>
<td>24</td>
<td>16</td>
<td>91</td>
<td>14.3</td>
<td>9</td>
<td>33.3</td>
<td>18</td>
<td>66</td>
<td>100</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Wang et al</td>
<td>110</td>
<td>27</td>
<td>9.1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>35</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Velti et al</td>
<td>150</td>
<td>34</td>
<td>14</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>24.8</td>
<td>75.2</td>
<td>92.2</td>
<td>93.2</td>
<td>NR</td>
</tr>
<tr>
<td>Leveirdge et al</td>
<td>345</td>
<td>25</td>
<td>19.4</td>
<td>87.8</td>
<td>NR</td>
<td>12.2</td>
<td>NR</td>
<td>20.6</td>
<td>79.4</td>
<td>99.7</td>
<td>98</td>
<td>63.5</td>
</tr>
<tr>
<td>Prince et al</td>
<td>565</td>
<td>28</td>
<td>14.7</td>
<td>85.3</td>
<td>NR</td>
<td>14.7</td>
<td>39.8</td>
<td>18.3</td>
<td>81.7</td>
<td>NR</td>
<td>NR</td>
<td>43</td>
</tr>
<tr>
<td>Blumenfeld et al</td>
<td>81</td>
<td>53</td>
<td>2.5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>2.5</td>
<td>97.5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Vasudevan et al</td>
<td>100</td>
<td>NR</td>
<td>29</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Lechevalier et al</td>
<td>73</td>
<td>40</td>
<td>21</td>
<td>89</td>
<td>20</td>
<td>11</td>
<td>25</td>
<td>14.3</td>
<td>85.7</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: Not recorded.
Diagnostic Performance

Table 2 – Outcomes of needle core biopsies of renal masses in recent series

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of tumours biopsied</th>
<th>Mean tumour size, cm</th>
<th>No. of pathologically confirmed tumours</th>
<th>Image guidance</th>
<th>Needle size, gauge</th>
<th>No. of biopsies taken</th>
<th>Diagnostic biopsies, %</th>
<th>Accuracy for malignancy, %</th>
<th>Accuracy for RCC subtyping, %</th>
<th>Accuracy for grading, %</th>
<th>Impact on management, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuzillet et al. [8]</td>
<td>88</td>
<td>2.8</td>
<td>62</td>
<td>CT</td>
<td>18</td>
<td>≥2</td>
<td>91</td>
<td>92</td>
<td>92</td>
<td>69.8</td>
<td>47.8</td>
</tr>
<tr>
<td>Shannon et al. [9]</td>
<td>235</td>
<td>2.9</td>
<td>108</td>
<td>CT/US</td>
<td>18</td>
<td>1-4</td>
<td>78</td>
<td>100</td>
<td>78</td>
<td>98</td>
<td>NR</td>
</tr>
<tr>
<td>Schmidbauer et al. [10]</td>
<td>78</td>
<td>4.0</td>
<td>78</td>
<td>CT</td>
<td>18</td>
<td>2-3</td>
<td>97</td>
<td>Sensitivity 93.5</td>
<td>91</td>
<td>76</td>
<td>24.3</td>
</tr>
<tr>
<td>Lebret et al. [11]</td>
<td>119</td>
<td>3.3</td>
<td>64</td>
<td>CT/US</td>
<td>18</td>
<td>1-4</td>
<td>79</td>
<td>86</td>
<td>86</td>
<td>46/74</td>
<td>30.4</td>
</tr>
<tr>
<td>Maturen et al. [12]</td>
<td>152</td>
<td>4.1</td>
<td>106</td>
<td>CT/US</td>
<td>18</td>
<td>2-4</td>
<td>96</td>
<td>Sensitivity 97.7</td>
<td>NR</td>
<td>NR</td>
<td>60.5</td>
</tr>
<tr>
<td>Volpe et al. [13]</td>
<td>100</td>
<td>2.4</td>
<td>20</td>
<td>CT/US</td>
<td>18</td>
<td>≥2</td>
<td>84</td>
<td>100</td>
<td>100</td>
<td>66.7/75</td>
<td>43</td>
</tr>
<tr>
<td>Wang et al. [14]</td>
<td>110</td>
<td>2.7</td>
<td>36</td>
<td>CT/US</td>
<td>18</td>
<td>≥2</td>
<td>90.9</td>
<td>100</td>
<td>96.6</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Veltre et al. [15]</td>
<td>103</td>
<td>3.4</td>
<td>40</td>
<td>US</td>
<td>18</td>
<td>1-2</td>
<td>100</td>
<td>NR</td>
<td>93.2</td>
<td>NR</td>
<td>68.9</td>
</tr>
<tr>
<td>Levenidge et al. [16]</td>
<td>345</td>
<td>2.5</td>
<td>74</td>
<td>CT/US</td>
<td>18</td>
<td>≥2</td>
<td>80.6</td>
<td>99.7</td>
<td>88</td>
<td>63.5</td>
<td>NR</td>
</tr>
</tbody>
</table>

RCC = renal cell carcinoma; CT = computed tomography; US = ultrasound; NR = not reported.

* Retrospective evaluation.

** Four-tiered Fuhrman classification/two-tiered simplified Fuhrman classification (Fuhrman I-II = low grade; Fuhrman III-IV = high grade).
Diagnostic Performance

• Many definitions
 • Ability to differentiate benign versus malignant
 • 91-100% accurate1,3
 • Ability to correctly subtype malignancy
 • 87-97% accurate1,3
 • Ability to grade tumors
 • 58-74% accurate1,3
 • Perhaps due to intra-tumoral grade heterogeneity
 • Improved accuracy if Fuhrman grade is dichotomous – low (I and II) and high (III and IV)2

Diagnostic Performance

• Non-diagnostic biopsy
 • Insufficient material (e.g. necrosis) or normal renal parenchyma
 • Most occur in cystic/necrotic or small masses
 • On-site cytotech can help improve this
 • Target areas at edge of mass, and different areas of the mass
• Improving diagnosis
 • Tumor size
 • Lack of contrast enhancement
 • Skin to tumor distance
 • “Phytic-ness”, position, polarity, modality of guidance, needle size, operator experience have not been shown to matter
• Repeat biopsy
 • Can lead to histologic dx in up to 83% of repeat cases
 • Therefore “non-diagnostic” biopsies should be regarded with caution

Oncocytoma

- Oncocytoma versus chromophobe RCC (crRCC)
 - Hale’s colloidal iron stain
 - Positive stain for crRCC
 - Cytokeratin 7
 - Positive stain for crRCC
 - S100A1
 - Positive stain for crRCC
- More work to be done for distinguishing oncocytoma from crRCC
Indications for Biopsy: Prior

- Extra-renal primary
- Unresectable renal cancer (e.g. immunotherapy/trials)
- High risk surgical candidates
- Multiple solid renal masses
- Possible infection
- Small hyper-dense masses
- Prior to ablation – up to 37% of masses benign\(^1\)
- ?Bosniak 3 lesions (risk of hemorrhage outweighs benefit of diagnosis)

Indications for Biopsy: Future Directions

• Consensus:
 • Perform a biopsy when results might change management
• Small renal masses (< 4cm)
 • Confirm malignancy and subtype to inform therapeutic options and for predicting disease-specific survival
 • Active surveillance
 • Ablative techniques
 • Additional immunohistochemical staining for guiding personalized management
• After thermal ablation
Conclusions

• Size is proportional to likelihood of malignancy
• Risks of percutaneous biopsy are minimal
• Diagnostic accuracy of percutaneous biopsy is excellent
• Most important indications for biopsy:
 • Small renal mass (< 4 cm)
 • Confirm malignancy
 • Subtype and grade will inform therapy
 • Prior to and after thermal ablation
 • Extra-renal primary
 • Research
 • Cytotech on site if possible
Conclusions

Management of the Incidental Renal Mass on CT: A White Paper of the ACR Incidental Findings Committee

Brian R. Herts, MDa, Stuart G. Silverman, MDb, Nicole M. Hindman, MDc, Robert G. Uzzo, MDd, Robert P. Hartman, MDe, Gary M. Israel, MDf, Deborah A. Bauerngarten, MD, MPHg, Lincoln L. Berland, MDh, Pari V. Pandharipande, MD, MPHi
References

Beland MD, Mayo-Smith WW, Dupuy DE, Cronan JJ, DeLellis RA. Diagnostic yield of 58 consecutive imaging guided biopsies of solid renal masses: should we biopsy all that are indeterminate. AJR Am J Roentgenol 2007; 188: 7927. doi:10.2214/AJR.06.0356. PMid: 17312070

