HABITATS IN PROSTATE CANCER

Yoganand Balagurunathan, Ph.D
Cancer Imaging and Metabolism
Moffitt Cancer Center
(yogab@moffitt.org)
Learners Objective

- Current Prostate Cancer Clinical Care
- Concepts of Habitat Imaging
- Quantification of Imaging Habitat and predictive risk assessment for active surveillance.
- Potential of quantitative histology and future research direction
Motivation

• Prostate cancer continues to be the most common cancer among men (estimated to affect ~160, 000 men, yearly) and second largest cause of cancer death among men in the US*.
• About 80% of the prostate cancers are diagnosed in men ≥ 65 years of age.
• Prostate cancer is an heterogeneous disease with over 20 different cell lines available for laboratory purpose.
• About 90% of Prostate cancers are Adenocarcinomas originating in the gland and ducts. About 75% of the tumors appear in the peripheral zone.
• Current standard of care: involves DRE (digital rectal examination) and PSA (prostate specific antigen) for surveillance and diagnosis of the disease.

• Siegal et.al, Ca Cancer J Clin, Cancer statistics 2016
Current Impediment

• “Nowhere is the issue of overtreatment of indolent tumor's and under-treatment of high-risk disease with the potential to metastasize more pertinent than in prostate cancer”

• “Controversy is to divide the population into High risk needing active treatment and low risk individuals that needs active surveillance”
Clinical Risk Assessment

The National Comprehensive Cancer Network (NCCN) defines:

- ‘High-risk’ as T3a, Gleason ≥ 8, or PSA ≥ 20ng/ml
- ‘Very high risk’ as T3b or T4 disease, the prognostication of which was improved by recording the proportion of biopsies with $\leq 50\%$ versus $>50\%$ tumor involvement

Our Focus: **Active Surveillance**: Availability of advanced Imaging (mpMRI) opens avenues for quantitative risk assessment.

- NCCN guidelines
- Chang, A et al, Nat.Reviews 2014
Why Targeted Therapies Fail?

(one reason): Tumors have Ecology! (Heterogeneous)

Tumors are not homogeneous well-mixed systems: they are complete ecosystems comprised of habitats; each with their own local selection pressures and phenotypes.
What are Habitats?

• **Definition:** Is an **ecological or environmental area that is naturally inhabited by particular species of plant or animal.**

• Each species have preferred Habitats for its natural living.

• **INFERENCE:** If we can find the species (tumor), we can guess its Habitats (tumor-region). And vice-versa is true.

* Gatenby Radiology, 2013

Dr. Joel Brown
Imaging Habitats: Scene

Inference: What information can Habitats Provide us?
- Localization of Region of Interest (Tumor)
- Identification of Broad area of interest (Micro-environment)
Prostate Habitats: Example

T2

T1 (Phase 3)

ADC

Whole Prostate

OTSU (Distribution)

ROI

Fuzzy Functions

Region Identification

Tumor (extreme)

Tumor

T (DCE, Phase 3) Prostate

ADC
Can Habitats Predict Cancer Aggressiveness?

Data:

1. Surveillance Cohort
(Accrual at Univ. Miami, expected accrual ~165 patient by 2019)
- 54 MAST Patients
- Biopsy locations available
- Pathology for MAST patients

Imaging: mpMRI
- T2w, DCE (T1w), ADC
- Registered/ Resampled to T2.

<table>
<thead>
<tr>
<th>Class</th>
<th>Benign (GS ≤6)</th>
<th>Cancer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS ≤6 Vs ≥7</td>
<td>74</td>
<td>37</td>
<td>111</td>
</tr>
<tr>
<td>GS ≤6 Vs ≥8</td>
<td>74</td>
<td>14</td>
<td>88</td>
</tr>
</tbody>
</table>

2. Data: SPIE Prostate X Challenge
- Training: ~203 patients (T2, ADC, DWI,K-Trans)
- Testing: ~140 patients
Habitat Identification (Low T2, Low in ADC), which is “Habitat-Tumor” region (most probably tumor region).

Habitat Tumor:
- Low T2
- Low ADC
- High DWI
Feature Based Model

308 Features

- **Features Computed on the Habitat Region**

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>9</td>
</tr>
<tr>
<td>Shape</td>
<td>18</td>
</tr>
<tr>
<td>Location</td>
<td>10</td>
</tr>
<tr>
<td>Intensity</td>
<td>42</td>
</tr>
<tr>
<td>RunLength</td>
<td>16</td>
</tr>
<tr>
<td>GraySizeZone</td>
<td>16</td>
</tr>
<tr>
<td>Cooccurrence</td>
<td>25</td>
</tr>
<tr>
<td>GrayTone</td>
<td>5</td>
</tr>
<tr>
<td>Laws</td>
<td>125</td>
</tr>
<tr>
<td>Wavelet</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>~307</td>
</tr>
</tbody>
</table>

Malignancy Risk Predictor

mpMRI

Dynamics (on DCE)
Discriminate Low Vs High Risk: (GS ≥ 7) Vs Benign (GS ≤ 6)

ADC (Raw): GS ≤ 6 Vs ≥ 7

<table>
<thead>
<tr>
<th>Features</th>
<th>Error</th>
<th>AUC: μ (σ), CI</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiomics-ADC</td>
<td>0.205</td>
<td>0.854 (0.083), [0.678,0.98]</td>
<td>0.613</td>
<td>0.926</td>
</tr>
</tbody>
</table>

T2 (Raw): GS ≤ 6 Vs ≥ 7

<table>
<thead>
<tr>
<th>Features</th>
<th>Error</th>
<th>AUC: μ (σ), CI</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiomics-T2</td>
<td>0.218</td>
<td>0.788 (0.123), [0.335,0.965]</td>
<td>0.585</td>
<td>0.886</td>
</tr>
</tbody>
</table>

Combined (ADC & T2)
AUC = 0.89

ADC (Radiomics)
AUC = 0.854 [0.68,0.98]

T2 (Radiomics)
AUC = 0.788 [0.34,0.97]
b. Low Vs Aggressive: GS ≤ 6 Vs GS ≥ 8

ADC (Raw): GS ≤ 6 Vs GS ≥ 8

<table>
<thead>
<tr>
<th>Features</th>
<th>Error</th>
<th>AUC: µ (σ), CI</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiomics-ADC (Stat-Quart-coef-; Least-axis-length;COM-shift)</td>
<td>0.079</td>
<td>0.858 (0.15), [0.438,0.969]</td>
<td>0.63</td>
<td>1</td>
</tr>
</tbody>
</table>

ADC (Radiomics) AUC = 0.858 [0.44,0.97]

ADC (Raw): GS ≤ 6 Vs GS ≥ 8

<table>
<thead>
<tr>
<th>Features</th>
<th>Error</th>
<th>AUC: µ (σ), CI</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiomics-T2 (Vol-density-;F75:Area-density-AvgCooc_)</td>
<td>0.163</td>
<td>0.91 (0.105), [0.62,0.979]</td>
<td>0.389</td>
<td>0.984</td>
</tr>
</tbody>
</table>

T2 (Radiomics) AUC = 0.91 [0.62,0.97]

Combined (ADC & T2) AUC = 0.94
Clinical Benefit

- Radiomic Predictors shows wide range of benefit to predict true disease (Higher grade Gleason).
Digital Pathology Challenges

Quantification of H&E slides

- Each Cell: ~99 Features Extracted
- Slide: ~93,684 segmented cells
 (~52308 Tumor ~41374 Stroma)

C1: Stain-Intensity-Based 11
C2: Cell-Size/Shape ~25
C3: Texture (Co-Occurrence, Gray level) ~63

• Morphology of the cells will characterize the tumor at the lowest resolution.
Future Goal: Multi-modality Integration

MRI Image

Resolution: mm

T1 (DCE)

T2

ADC

MR Image

Digital Pathology

Risk of Disease Progression

Genomics

HE Stain

IHC Stain: Digital Path

Area=1201.6 mm²
Perimeter=152.4 mm
Volumen=2615 mm³
Surf. area=1099.33 mm²
Surf. Area/Volumen=0.42 mm⁻¹

Density, Necrosis
Mean = 19.33 HU
SD = 76.59 HU
Min = -249 HU
Max = 118 HU

Spiculations
Slope at margin =133.5±31.3 HU/mm
Low density inclusions
Rel. vol.= 0.21 mm³
Number=10
Volume=4.89±8.35 mm³

Future Goal: Multi-modality Integration

Risk of Disease Progression
Acknowledgements

Moffitt
Robert Gillies, PhD
Andres Nestor Parra, PhD
Hong Liu, MD
Jin Qi, MD
Wei Mu, PhD

Moffitt-Radiology
Jung Choi, MD
Ken Cage, MD

Urology
Julio Powsang, MD

IRAT Core
Olya Stringfield, PhD
Abdalah Mahmoud, PhD

University of Miami
Radka Stoyanova, PhD
Sanoj Punnen, MD
Felix Chinea, MD
Alan Pollack, MD

Moffitt-Pathology
Jas Dhillon, MD
Daryoush Saeed-Vafa, MD

Moffitt-Digital Pathology Core
Joe Johnson, MS
Agnieszka Kasprzak, MS

Funding Agencies
PQ Grant (NCI), R01/U01 (NCI)
References

- Siegal et al., Ca Cancer J Clin, Cancer statistics 2016
- Gatenby et al., Radiology, 269(1), 2013
- NCCN guidelines
- Chang, A et al, Nat.Reviews 2014
- Litwin, JAMA, 317 (24), 2017;