Is Immune Therapy the Holy Grail in Metastatic Kidney Cancer?”

Mayer Fishman, MD PhD

Member, Moffitt Cancer Center
Department of Genitourinary Oncology

Professor, University of South Florida,
Morsani College of Medicine
Department of Oncologic Sciences
Department of Internal Medicine

New Frontiers in Urologic Oncology
8-2016
Is Immune Therapy the Holy Grail in Metastatic Kidney Cancer?

No, it is not.

Did I let Phil write my presentation title?

Yes, I did.

Do we need a Holy Grail?

It would solve some problems.
These are not very specific to RCC

Contemporary Immune therapy

- Cytokines
- Checkpoint inhibitors
- Vaccines
- Cellular therapy
Opportunities for RCC

RCC has features that show immune susceptibility

- Slow pattern of growth, for some
- Antigen load is intermediate
 SET2D: May amplify existing mutanome
- Proven response patterns
- Integration with targeted drugs (VEGFR, mTOR)

Challenges

- Responses may be slow
- Sequencing with VEGFR, debulking
- Subtypes – new development needed
- Coordinating with other diseases translational efforts
On-label/ off-label

Green:
US-FDA indication in RCC

Blue:
RCC specific trials accrual-completed

*/Red:
No US-FDA indication or no RCC pivotal trial
Contemporary Immune therapy

Opportunities for RCC

Cytokines

Interferon
IL-2

Engineered IL-2 cytokines

Activating antibodies

* / ALT-801
* / ALK-4230
* / NKTR-214

* / OX-40 ligand
MOXR0916, RG7888
Opportunities for RCC

Contemporary Immune therapy

Checkpoint inhibitors

PD-1

Nivolumab

/ Pembrolizumab

/ Atezolizumab

/ Darvelumab

/ Avelumab

/ Ipilimumab

/ Tremilimumab
Opportunities for RCC

Contemporary Immune therapy

*/ Immatics IMA-901

Vaccines

ARGOS

*/ ADAPT (AGS-003)
Opportunities for RCC

Contemporary Immune therapy

- TIL
- CAR-T

Cellular therapy
Contemporary Immune therapy

Combinations

- Cytokines
- Checkpoint inhibitors
- Vaccines
- Cellular therapy
- Targeted drugs
IL-2 aldesleukin (Proleukin™)

- 1992 approval in RCC
- Label describes ORR from phase II studies from over 20 years ago
- Newer series have higher response rates.

Responders

Ever-treated

Evolving patient selection
Less fit
Not-clear cell type
Convenience factor
IL-2: The label

- 600,000 IU/kg/dose
- One dose every 8 hours, x 14 doses (or omit)
- Inpatient management only

- Two courses of 14 doses, 9-16 days apart:
 - Week 1 and 3 or
 - Week 1 and 4

- Evaluate response ~ 8-9 weeks.
- Repeat – 1-3 courses
IL-2: Still works

4/2016 ← ← ← 12/2013

45 y/o. Off treatment now 2+ years
1/12 or 1/6 or 1/3: Still not most.

Patient selection means fewer are treated.
ASCO 2016: #4555 Chow et al from UK: High dose Interleukin 2 (HD IL2) as 1st line treatment in metastatic renal cell carcinoma (mRCC): A 10-year single centre experience.

<10% papillary + at least one of:

a) >50% alveolar and or > 50% solid architecture
b) <50% granular cytoplasm or >50% clear cell features

Table

<table>
<thead>
<tr>
<th></th>
<th>FAVOURABLE N=123</th>
<th>OTHER N = 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>83</td>
<td>33</td>
</tr>
<tr>
<td>Papillary <10%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alveolar >50%</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Granular <50%</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ORR %</td>
<td>51</td>
<td>39</td>
</tr>
<tr>
<td>CRR %</td>
<td>23</td>
<td>21</td>
</tr>
</tbody>
</table>
MCC 17099 “PROCLAIM”
IL-2 RCC database

Product-Limit Survival Estimates
With Number of Subjects at Risk

Survival Probability

<table>
<thead>
<tr>
<th>CR</th>
<th>PD</th>
<th>PR</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>116</td>
<td>17</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Months Follow-Up

CR, n=11, mOS=NR
PR, n=17, mOS=NR
SD, n=41, mOS=49.6
PD, n=116, mOS=32.6
The lymphocyte

IL-2 receptor

IL-2

Alpha CD25

Beta CD 122

Gamma CD 132

The lymphocyte
IL-2 receptor: intermediate affinity

The T or NK lymphocyte
The regulatory lymphocyte

IL-2 receptor: high affinity

The alpha chain
Inhibits the off-rate of the IL-2

IL-2

Alpha CD25

Beta CD 122

Gamma CD 132

The regulatory lymphocyte
High dose IL-2

Both are ligated

Undesirable?
Low or very low dose IL-2

Desirable for Graft-vs-host?
Engineered IL-2: NKTR-214

CD25 is sterically blocked

Desirable – More effector?
NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding, Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models

NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding, Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models

Phase 1 just getting started

Works better with CTLA-4

Retards growth of B16 F10 melanoma
Engineered IL-2: ALK4230

CD25 is on the Cytokine already

Desirable – Level field
Engineered IL-2: ALK4230

CD25 is on the Cytokine already

regulatory lymphocyte

Desirable – Level field

Effector lymphocyte
“Circularly permuted IL-2 and IL-2Rα that is selective for the intermediate-affinity IL-2 receptor”

Both drive expansion of NK cells, however, a greater proportion of CD25+ NK cells with ALK 4232- than IL-2

Unlike IL-2, ALK 4230 does not effectively expand highly suppressive ICOS+ T_{reg}s

Contemporary Immune therapy

- Cytokines
- Checkpoint inhibitors
- Vaccines
- Cellular therapy

Tumor
Antibody Checkpoint inhibitors

- CTLA-4
- PD-1
- PD-L1

Checkpoint inhibitors

• CTLA-4:
 – Ipilimumab + nivolumab vs sunitinib

• PD-1
 – Nivolumab vs everolimus, 2nd line (details)
 – Nivolumab + sunitinib
 – Nivolumab + pazopanib
 – Pembrolizumab + axitinib
Checkpoint inhibitors

- PD-L1
 - Bevacizumab/atezolizumab vs sunitinib
 - Avelumab/axitinib vs sunitinib ("Javelin")
 - Darvelumab study
Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

Clear Cell RCC
Prior therapy with VEGF

Nivolumab 3mg/kg 2w

Everolimus 10 mg

Sunitinib 488 (59)
Pazopanib 250 (30)
Axitinib 101 (12)

<table>
<thead>
<tr>
<th></th>
<th>med PFS</th>
<th>events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab</td>
<td>4.6 (3.7–5.4) mo</td>
<td>318</td>
</tr>
<tr>
<td>Everolimus</td>
<td>4.4 (3.7–5.5)</td>
<td>322</td>
</tr>
</tbody>
</table>
Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

Clear Cell RCC
Prior therapy with VEGF

Nivolumab 3mg/kg 2w
Everolimus 10 mg

Nivolumab

Everolimus

med. OS # dec.
Nivolumab 25.0 (21.8–NE) mo 183
Everolimus 19.6 (17.6–23.1) 215

Hazard ratio, 0.73 (98.5% CI, 0.57–0.93)
P=0.002

OS
Nivolumab

OS: PD-L1 < 1%

Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

OS: **PD-L1 at least 1%**

Under 1% is favorable

Median OS

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab</th>
<th>Everolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>27.4 (21.4–NE)</td>
<td>21.2 (17.7–26.2)</td>
</tr>
</tbody>
</table>

“Same difference”
Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

<table>
<thead>
<tr>
<th>PD-L1 expression level</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1%</td>
<td>181 (24)</td>
</tr>
<tr>
<td><1%</td>
<td>575 (76)</td>
</tr>
<tr>
<td>≥5%</td>
<td>85 (11)</td>
</tr>
<tr>
<td><5%</td>
<td>671 (89)</td>
</tr>
<tr>
<td>Patients without quantifiable PD-L1 expression — no. (%)</td>
<td>65 (8)</td>
</tr>
</tbody>
</table>
Nivolumab

Mechanism:
- PD-1 (programmed death) checkpoint protein on lymphocytes
- Antibody blocks ligation of ligands – PD-L1 (in some tumors) and PD-L2
- Lymphocyte behavior is changed: Tumor is attacked.
Nivolumab

August 2012 < ------------ June 2012 (prior sorafenib, LD IL-2, IFN)
April 2016 < ------------

HD IL-2 for lung nodules (regressed); skin nodules resected

Jan 2015 < ------------
Immatics IMA-901
- Sunitinib
- Sunitinib + cyclophosphamide/ 9 peptides (HLA-A2 only)
- No OS difference (ESMO 2015)

ARGOS Adapt
- Sunitinib ➔ everolimus ➔ next
- with or without: autologous DC vaccine – loaded with mRNA from the primary tumor
Cellular therapy

- CAR (chimeric antigen receptor)-T cells:
 - One day, but not today
 - RCC is does not have a prominent antigen to target
Cellular therapy

• TIL cells
 – RCC was an original development target
 – Negative trial for IL-2/LAK vs IL2 (next slide)
 – I think it will come around again.

 Tumor sample excision → Isolate lymphocytes, growth with IL-2 → Select relevant clones → Massive expansion → Reinfusion and IL-2 combination

181 patients
97 had RCC
54 had melanoma
(30 had other diagnoses)

1:1 randomization HD-IL-2 vs HD-IL+ LAK

Follow up at + 63 months median.

“Our results suggest a trend toward increased survival when IL-2 is given with LAK cells in patients with melanoma, but no trend was observed for patients with renal cell cancer.”
Summary – straightened out

- Cytokines
- Checkpoint inhibitors
- Targeted drugs
- Vaccines
- Radiation therapy
- Immunologic XRT
- Marker analysis
- Cellular therapy

THANK YOU