Introduction

In-transit metastases from extremity melanoma are subcutaneous or cutaneous deposits of melanoma distant from the primary site but not reaching the draining nodal basin. While this is not considered stage IV disease, survival outcomes mimic those associated with advanced regional nodal disease, with 5-year survival rates of 24% to 54%. Therapy for this pattern of recurrence is limited and options vary based on the volume of disease in the affected limb. Definitive surgical resection remains the preferred therapeutic approach. However, when surgery cannot be performed with a
reasoned cosmetic and functional outcome, other options must be utilized. This article reviews the current options available for treating unresectable recurrent and in-transit metastases of extremity melanoma.

Radiation Therapy
Historically, melanoma was considered a radioresistant disease due to a lack of response observed with in vitro cultures treated with external-beam radiation. Clinical experience does not support the in vitro data. Early studies evaluating the palliative effects of radiation demonstrated overall response rates of 60% to 79% for stage III disease. While appropriate protocols for fractionated radiation are variable in that the dose per fraction, the number of fractions, and the time course of the fractionated therapy have not been standardized, symptomatic control is obtained for the majority of patients. Only 9% achieve a complete response (CR) to radiation therapy; however, and even those who do will still develop distant metastases. Although metastatic disease ultimately develops, some studies show that patients undergoing radiation (either higher fractions or higher total doses) have a significantly longer disease-free survival and overall survival (8 months vs 2 months). The population most likely to benefit in this fashion are those with a complete initial response to radiation. Therefore, while the precise algorithm for radiation therapy is still in evolution for recurrent or in-transit disease, there appears to be some benefit to using radiation to control disease and possibly prolong survival in patients who are not candidates for surgery or regional chemotherapy.

Carbon Dioxide Laser Ablation
In patients who develop low-volume, multifocal, in-transit metastases, carbon dioxide laser therapy can be a valuable treatment adjunct and, in some reports, is a useful first-line modality. As the volume of individual metastases increases, laser therapy becomes less effective and more difficult to perform. Larger lesions penetrate deeper into the subcutaneous tissue, diminishing the effectiveness of laser therapy while leaving a larger defect to heal. However, numerous small lesions may be easily treated, and reports of up to 450 small metastases have been ablated on an individual patient.7 Treatments may be performed in an outpatient setting, and only local anesthesia is required. Wound healing rates are acceptable, with studies reporting almost all wounds healed by 6 weeks. Ablations can be repeated multiple times; however, as the volume of disease increases, other modalities should be considered. Carbon dioxide laser ablation has been used both as a primary treatment modality, with regional therapies used for progressive disease, and as a salvage procedure after regional therapies have failed. The major limitation of laser therapy is that it can be used to treat only visible and superficial subcutaneous disease, while deep subcutaneous lesions, large volume lesions, and microscopic disease cannot be treated. Nevertheless, laser therapy does provide excellent local control and can be used for both treatment and palliation of low-volume, multifocal extremity metastases.

Intralesional Therapies
Bacille Calmette-Guérin
Bacille Calmette-Guérin (BCG) was the first commonly utilized agent for intralesional injections in the setting of in-transit metastases. In 1974, Morton et al reported their experience with intralesional injections of BCG. Regression occurred in 90% of the cutaneous lesions that were injected with BCG, and 17% of the patients injected had regression of uninjected nodules. They achieved a 31% disease-free survival at 6 to 74 months after injection. Later studies demonstrated improved local response rates with intralesional BCG injections, but the local complications in and around the injection site were severe. While local response rates were improved, survival results from these randomized control trials were inconsistent. A subgroup analysis by Veronesi et al showed improved survival in patients who converted to a positive BCG reaction from no initial reaction. In a large Eastern Cooperative Oncology Group (ECOG) trial (E1673) involving more than 700 patients, a survival difference in patients who received BCG with or without dacarbazine compared to the observation arm could not be identified. In contrast to observations from data by Veronesi et al, a subset analysis of the ECOG trial was not able to identify a difference in survival in patients who converted to a positive reaction after receiving BCG. Because of the associated injection-site morbidity and the inability to identify a survival benefit, intralesional injection with BCG has largely been abandoned in the management of in-transit metastases.

Interleukin-2
Interleukin-2 (IL-2), a cytokine with a wide array of immunomodulatory effects, has been widely studied over the past 20 years. Atkins et al reviewed 270 patients treated with high-dose IL-2 and demonstrated a 16% overall response rate (6% CR and 10% partial [PR]) for all sites. They achieved a median duration of response of more than 5+ months for CRs and 8.3 months for PRs. This led the US Food & Drug Administration (FDA) to approve high-dose IL-2 for the treatment of stage IV melanoma. In a subsequent study, low-dose IL-2 was evaluated as adjuvant therapy with interferon in node-negative intermediate-thickness melanomas, but this study showed no difference in the observation arm compared with the treatment arm. IL-2 has also been analyzed in combination with chemotherapy (known as biochemotherapy), and these results are mixed. However, in each of the phase III trials, biochemotherapy vs chemotherapy alone did not yield any significant difference in outcomes.
except for increased grade 4 toxicities. These toxicities limit the effectiveness of systemic IL-2.

Intralesional IL-2 therapy was studied for patients with soft-tissue as well as in-transit metastases. In a 2003 pilot study, Radny et al evaluated intralesional IL-2 as salvage therapy for patients who failed surgery, perfusion, radiotherapy, or chemotherapy. CR rates were achieved in 15 of 24 patients and PR rates in 5 patients. Toxicities were mainly grades 1 and 2. The longest remission at that time was 58 months for patients with CR. In total, 209 of 245 metastases underwent CR, with progression of 7 cutaneous/subcutaneous metastases. Similarly, in a report from Germany, 2 patients who were not operative candidates and had multiple in-transit metastases received intralesional IL-2 with complete remission of their disease. Only local toxicities were seen and no systemic side effects occurred. IL-2, as a local therapy, may be a useful adjunct for treatment of in-transit metastases or recurrent melanoma, but as with intralesional BCG, the time-intensive nature of this modality may be prohibitive. Further investigation is warranted.

Electroporation

Electroporation, also known as electrochemotherapy (ECT), creates cell membrane defects or porations by generating short, high-intensity electrical pulses. These porations increase cell permeability and allow the increased uptake of cytotoxic drugs that are administered prior to the electrical pulsations. Moreover, the electrical stimulation causes a local vasoconstriction (limited to less than 24 hours), which allows the chemotherapy to increase its local activity prior to its clearance from the surrounding tissues. The two drugs shown to have the highest efficacy when used with ECT are bleomycin and cisplatin. Their intracellular activity is potentiated more than 1,000-fold for bleomycin and 100-fold for cisplatin. Intratumoral ECT with bleomycin yielded CR rates of 77% compared to 45% when given intravenously. Similarly, ECT with cisplatin compared to intravenous administration yielded CR rates of 67% and 48%, respectively. Response rates from intratumoral injections of bleomycin with and without ECT decreased from 78% to 32% when electrochemotherapy was not utilized. Subsequent reports of ECT for melanoma and other cutaneous tumors were consistent with the aforementioned studies and supported ECT as an effective modality, but treatment techniques varied widely. Therefore, a multicenter study performed by the European Standard Operating Procedures for Electrochemotherapy (ESOPE) defined the parameters for using ECT with multiple histologies and varying chemotherapeutic agents. They achieved a response rate of approximately 85% in their study regardless of the drug used or the route of administration.

The indications for ECT, which are similar to other intralesional techniques, are primarily for cutaneous metastases that cannot be excised due to the number or location of the tumors. A major advantage of ECT is that it can be used in previously irradiated areas. It can also be employed to improve the quality of life in patients who have bleeding or painful lesions, and it may improve cosmesis. Adverse effects of ECT are limited to minor irritation at the injection site and an “electric shock” sensation from the pulse current. These effects are transient and minimal, and the procedure can be performed in an outpatient setting with no need for local, regional, or general anesthesia.

TNFerade

Tumor necrosis factor-alpha (TNF-α) is a potent immune system regulator with tumoricidal properties. The use of TNF-α is limited secondary to its severe toxicities when given systemically. One mechanism utilized to overcome these toxicities was to clone the TNF-α gene into a nonreplicating adenovirus downstream from a radiation and chemotherapy-induced promoter (Egr-1) and deliver it directly into the tumor. This adenovirus complex is known as TNFerade.

TNFerade is synergistic with radiation in that the combination effect is greater than either modality alone with no resultant increase in normal tissue damage. A phase I study by Senzer et al evaluated multiple tumor types with TNFerade and radiation. They demonstrated pathologic CR in 3 melanoma patients, including a patient who previously had no response to radiation alone. Likewise, McLoughlin et al evaluated 5 patients with advanced melanoma who had a CR after TNFerade with a durable response of at least 2 years. Building on these trials, MacGill et al evaluated a preclinical mouse model of metastatic melanoma and demonstrated that TNFerade, in addition to the effects of local treatment, reduces distant disease. These early clinical trials support the use of TNFerade for extremity in-transit disease, but larger clinical trials are needed to validate its use for regional and distant metastases.

Systemic Chemotherapy

Systemic chemotherapy with or without biochemotherapy for melanoma has modest response rates at best (11.4% to 17.1%). This modality is usually selected for distant metastatic disease and not for locoregional control; however, there are some circumstances where systemic chemotherapy may be appropriate. Patients who have high-volume in-transit disease may be candidates for chemotherapy since purely local or intralesional therapies are not realistic. Similarly, systemic chemotherapy becomes an option for patients who are not surgical candidates for regional therapies such as limb perfusion or infusion.

Dacarbazine has been the standard for chemotherapeutic agents in metastatic melanoma and the only one approved by the FDA, and yet the treatment responses
are limited and not durable. A response rate of only 20% with a median duration of response of 4 to 6 months has been reported. Temozolomide, an oral chemotherapeutic agent with the same metabolite as dacarbazine, has been shown to be of equivalent efficacy to that of dacarbazine and with a similar toxicity profile.

Combination chemotherapies have been shown to have improved outcomes in single center studies, but they also have associated increased toxicities. However, as data from larger trials are evaluated, these data seen in the single institution studies have not been reproduced, and the response rates appear to be equivalent or marginally better — approximately 18% for combined therapy vs about 10% for dacarbazine alone \(P = \text{NS} \). Therefore, since the response rates and duration of response are limited with chemotherapy, other modalities should be considered for the treatment of locoregional recurrence or in-transit metastases for melanoma.

Regional Therapies

Hyperthermic Isolated Limb Perfusion

Hyperthermic isolated limb perfusion (HILP) as described by Creech et al in 1958 is a regional treatment for in-transit metastases using high-dose chemotherapy or bio-chemotherapy bypassing the systemic complications. This surgical procedure entails dissecting and isolating the external iliac vessels for the lower extremity or the axillary vessels for the upper extremity. Regional node dissection can be performed if clinically indicated at the time of vascular dissection. The vessels are directly cannulated and the limb is isolated via a tourniquet. The chemotherapy is then infused and recirculated through the limb via a cardiopulmonary bypass machine to reheat and re-oxygenate the removed blood. This allows for drug concentrations 15 to 25 times higher in the target tissue than what can be achieved systemically. This technique effectively excludes the bone marrow and gastrointestinal tract from the perfusion circuit and spares the patient the common toxicities of systemic chemotherapy. Similarly, the perfusate is washed out from the limb with 2 liters of a balanced electrolyte solution, and the liver and kidney are not exposed to the harmful effects of metabolizing and excreting the chemotherapy. Isolation of the limb also allows regional hyperthermia to be achieved, which has been shown to augment the effects of the delivered chemotherapy. HILP for melanoma is usually performed under a mild hyperthermia \(38^\circ \text{C} \) to \(40^\circ \text{C} \). While raising the basal temperature increases response rates, it can also increase regional toxicities.

The chemotherapeutic agents most widely used in HILP are melphalan (United States and Europe) and TNF-\(\alpha \) (Europe alone). Early studies comparing melphalan to other antineoplastic agents demonstrated that melphalan was a significantly better chemotherapeutic agent with improved response rates. While dacarbazine has the greatest effect against melanoma when given systemically for metastatic disease, it is less effective than melphalan when administered regionally. Outcomes from multiple studies yield typical CR rates for melphalan HILP between 50% to 70%, with recurrences rates of 40% to 50% if CR is achieved. When TNF-\(\alpha \) is added to melphalan, improved CR rates of 60% to 80% have been reported, but the data are not uniform and the patient inclusion criteria differ among studies. A recent multicenter randomized trial by the American College of Surgeons Oncology Group (ACOSOG Trial Z0020) of HILP with melphalan vs melphalan with TNF-\(\alpha \) showed CR rates of only 25% and 26%, respectively, far below what had been previously reported. They also reported a significantly higher number of complications with melphalan plus TNF-\(\alpha \) vs melphalan alone (16% vs 4% grade IV adverse events, \(P = .04 \)). These data have been refuted by Lejeune and Eggermont in a correspondence stating that these results were reported after only a 3-month interval follow-up, which is inadequate to assess the true response of HILP. They also noted that the patient and tumor characteristics were not delineated in the study so the target group may not have been applicable to the utilized treatment paradigm. It will be interesting to evaluate the data at longer outcome timepoints to see if TNF-\(\alpha \) did in fact impact the CR of melphalan. At this time, however, TNF-\(\alpha \) is not approved for regional therapy of in-transit metastases in the United States.

Morbidities from HILP with or without TNF-\(\alpha \) can be significant and are due to the local effects of the chemotherapy itself, the application of hyperthermia, the systemic leak of the chemotherapy from the isolated limb, or the surgical intervention. The local effects include skin and soft-tissue damage ranging from mild erythema and epidermolysis to extensive tissue damage requiring fasciotomy that results in a limb amputation rate of 0.5% to 1.5%. Vascular complications occur in up to 10% of patients and are due to stenosis and/or thrombosis at the arteriotomy/venotomy site or to deep venous thrombosis (DVT) formation with a resultant pulmonary embolus. Lymphedema is the most commonly reported morbidity and occurs at a frequency of 12% to 36%. This occurs in the acute setting and persists years after the perfusion. Groin dissection performed at the time of perfusion increases this risk. Tissue temperatures higher than \(40^\circ \text{C} \) or a greater concentration of melphalan are significant risk factors for developing local tissue damage.

Systemic effects such as myelosuppression and hypotension occur when the melphalan perfusate leaks from the isolated limb or when the washout is incomplete. If TNF-\(\alpha \) is used in the perfusate, then the toxicities can be even more severe. This necessitates the continuous monitoring of chemotherapy leakage from the limb during the perfusion using a radiolabeled trac-
er that can be measured systemically. If leakage occurs, the resultant increase in systemic radioactivity will be detected at a point distant from the isolated limb and the perfusion can be halted if necessary. Lastly, the surgical morbidity is well defined for any lymph node basin dissection that includes but is not limited to infection, lymphedema, and paraesthesias.8

Isolated Limb Infusion
Isolated limb infusion (ILI) as described by Thompson et al75 from the Sydney Melanoma Unit is the minimally invasive counterpart to isolated limb perfusion (ILP), which appears to be of similar efficacy but more easily performed. Instead of surgical exposure of the iliac or axillary vessels, vascular access is obtained in the radiology department via a percutaneous route in the groin (the contralateral groin if dealing with lower extremity in-transit metastases) and into the vessels feeding the affected limb. The leg is prewarmed with a warming blanket prior to bringing the patient to the operating room. Prewarming decreases the amount of time under general anesthesia. A pneumatic tourniquet is placed on the proximal aspect of the limb to “isolate” the limb from the systemic circulation. The temperature is monitored through temperature probes placed in the extremity, and once temperatures of 38° to 40° C are achieved, the infusion is begun. Like ILP, the chemotherapy is circulated through an extracorporeal circuit with a heating coil, then into the arterial catheter, and subsequently removed through the venous catheter to be rewarmed and recirculated. Unlike ILP, ILI is performed in an acidic and hypoxic milieu, which has been shown to augment the effects of melphalan.76

Clinical results for ILI demonstrated CR rates of 23% to 44% and PR rates of 27% to 56%. Median duration of responses ranged between 12 to 18 months.75,77-80 However, if CR was achieved, the median duration of response was 24 months compared with 9 months if PR was achieved. Median survival times were significantly longer if CR was achieved vs PR (42 vs 32 months, P = .04).78 The lower rates of 23% for CR and 27% for PR seen by Brady et al77 may be attributed to treating patients with a higher volume of disease and to using a shorter infusion time. Otherwise, the remainder of the studies reported outcomes similar to results achieved with ILP. Zager et al81 reported on a series of 64 patients with a median follow-up of 12 months. The authors reported a 68% overall response with 32% complete responders.

The morbidity from ILI differs significantly from ILP. Surgical access is not required, and patients with serious comorbidities can still undergo ILI. In the operating room, the duration of general anesthesia for ILI is limited, and the need for blood transfusions has practically been eliminated. While the regional toxicities of ILI and ILP are comparable, the systemic toxicities do not appear to be equivalent. The routine use of a pneumatic tourniquet prevents the systemic leakage of chemotherapy from the limb, and the washout of the chemotherapy prior to deflating the tourniquet removes most of the remaining chemotherapy.75 Unlike ILP, given the minimal invasiveness of ILI, patients who have progression of disease after therapy can receive a second infusion with minimal morbidity. Access to the affected limb can be obtained percutaneously weeks to months after the primary infusion with no increased complications. There is a significant increase in regional toxicity with a second infusion, but a high rate of response can be achieved.79

The morbidity of ILI in the postoperative setting is well defined. Nausea is commonplace but appears to be the only systemic toxicity reported. Myelosuppression and hypotension are rarely seen. Up to 52% of patients will experience nausea, but with the perioperative use of 5-HT3 receptor blockers, the amount has been curtailed and is limited to the first 24 to 48 hours.75 Inflammation and erythema become most evident peritumorally, but erythema and edema of the extremity distal to the tourniquet is expected to some degree in all patients.77 Mild to severe pain in the limb has also been reported, but these local toxicities are self-limited and resolve within 3 months to 1 year.77,79 Unlike ILP, there were no reported grade V toxicities82 when melphalan

Figure. — Development of severe grade III regional toxicity 6 days after an ILI (A), which subsequently resolved by the patient’s 3-month postoperative follow-up visit (B). Photographs courtesy of Keith A. Delman, MD.
was used as a sole agent. However, the addition of other chemotherapeutic agents as well as repeat infusions increased the grade V toxicities to up to 28% in those who underwent repeated ILI. The incidence of grade V toxicity associated with ILI has not been reported frequently in the literature. The Figure shows the development of severe grade III regional toxicity 6 days after an ILI that subsequently resolved by the patient’s 3-month postoperative follow-up visit.

Monitoring for early postoperative tissue toxicities includes a physical examination to evaluate any changes in the treated extremity, including increasing tenseness overlying the muscle groups, increasing pain and erythema, and sensorimotor deficits. Twice-daily creatine kinase (CK) levels are drawn. As noted by Lindnér et al., the risk of developing severe limb toxicity increases with CKs greater than 1,000 IU; however, multiple patients develop CKs of greater than 1,000 IU with no manifestations of severe limb toxicity requiring intervention. We note at both our institutions that CK values peak around 72 to 96 hours and then decrease gradually. Both institutions aggressively hydrate the patients to limit the nephrotoxic effects of myoglobinuria. Zager et al. suggest that intravenous corticosteroids may help after an ILI to lesson the regional inflammatory response in the muscle from reperfusion injury. Decadron 4 to 6 mg every 6 hours intravenously may lead to less postoperative edema, erythema, and extremity pain. The authors usually use corticosteroids after CK values peak over 1,000 U/L or if the infused leg develops severe edema and erythema that is uncomfortable to the patient in the absence of compartment syndrome symptoms.

The corticosteroids are tapered as the symptoms abate and the CK levels come down towards baseline. If any evidence of compartment syndrome arises, a fasciotomy should be performed early in the course to decrease the risk of limb loss. Patients are ambulatory by day 2 and are monitored for at least 4 days or longer if there is a significant increase in the CK value.

Conclusions
When in-transit metastases of melanoma are not amenable to surgical resection, various modalities can be utilized to treat this disease. The potential advantages of each therapy must be weighed against the toxicity of the therapy itself and of the biologic or chemotherapeutic agents used. Radiation therapy should be used only in the palliative setting. Carbon dioxide laser therapy has a role for small-volume, visible disease. Unlike BCG, newer intralesional injection agents are promising, with minimal apparent side effects, but the ability to treat innumerable lesions is limited. ILP is indicated for advanced locoregional recurrences, but the procedure is maximally invasive and the leakage of the chemotherapeutic or biologic agent remains a worrisome outcome, especially with the use of TNF-α. ILI is a minimally invasive procedure that can be repeated with ease and the initial toxicities are limited and well described.

No randomized, controlled trials have compared these different modalities and, currently, there is no standard of care for treating these patients. We believe that each modality can play a role in treating unresectable recurrent and in-transit melanoma, but the use of ILI is well tolerated, effective for disease control, and easily repeatable.

Disclosures
No significant relationship exists between the authors and the companies/organizations whose products or services may be referenced in this article.

References
necrosis factor alpha can impact primary tumor growth and metastases.

