Introduction

Malignant tumors of thyroid follicular cell origin have traditionally been classified as either well-differentiated thyroid carcinoma (WDTC), which is composed of papillary and follicular carcinoma, or undifferentiated/anaplastic thyroid carcinoma (ATC). The vast majority of patients with WDTC have an excellent prognosis regardless of the types of treatment used, whereas patients with ATC uniformly have a poor prognosis.¹ There is growing evidence for the existence of a group of tumors that fall between WDTC and ATC in terms of both morphologic appearance and biologic behavior.
These tumors, classified as poorly differentiated thyroid carcinoma (PDTC), may represent intermediate entities in the progression of WDTC to ATC. Patients with PDTC often have a rapid and fatal outcome despite appropriate treatment. Although over the years multiple publications have reported on this subject, controversies regarding optimal management of these patients still exist. This review is limited to PDTC and ATC in an attempt to better document their clinical behavior and long-term prognosis.

Poorly Differentiated Thyroid Carcinoma

Much of the controversy, confusion, and inconsistency surrounding PDTC comes from the lack of consensus regarding criteria and definitions. The term poorly differentiated thyroid carcinoma was introduced by Sakamoto et al in 1983, and their criteria were based mainly on the presence of nonglandular components with a solid, trabecular, and/or scirrhous growth pattern. Others have included aggressive papillary thyroid carcinoma variants such as columnar cell, tall cell, diffuse sclerosing, and solid. The fact that these papillary thyroid cancer variants tend to show a more aggressive behavior pattern than the classic type of differentiated thyroid carcinoma does not in itself justify the use of the term poorly differentiated, as defined by the tumor architecture. Furthermore, these tumors do not have an invariably poor prognosis. For example, the solid variant of papillary thyroid cancer displays some aggressive features, but patients tend to be younger and, with appropriate treatment, their overall prognosis is similar to that of classic papillary thyroid cancer. The tumors are especially frequent among pediatric thyroid carcinomas from the Chernobyl area and are associated with the RET/PTC3 rearrangement. Patients with encapsulated columnar cell thyroid carcinoma also have an excellent prognosis and should not be classified as PDTC. Since some clinicians include clinical characteristics in defining PDTC, the literature is inconsistent, thus precluding any definitive conclusions regarding the disease process. It is preferable to limit this term to histologic criteria.

We agree with the definition by Burman et al and others that “poorly differentiated thyroid carcinoma is a concept proposed to include carcinomas of follicular thyroid epithelium that retain sufficient differentiation to produce scattered small follicular structures and some thyroglobulin, but generally lack the usual morphologic characteristics of papillary and follicular carcinoma.” Based on this description, we have developed a chart to help classify tumors of thyroid follicular origin (Fig 1). PDTCs fall into two main categories — insular and other (large cell).

Insular Thyroid Carcinoma

Insular thyroid carcinoma (ITC) is the best-characterized group of PDTCs. Langhans first described it in 1907 as “wuchernde struma” (proliferating struma). He...
described a tumor characterized by a distinct nesting pattern, formation of small follicular lumina leading to a cribriform configuration, small size and uniformity of the tumor cells, necrosis, and a focally peritheliomatous pattern of growth (tumor cells around blood vessels, with necrosis of tumor cells farther away from vessels). This tumor entity was ignored by most modern authors as an inconsequential morphologic variant of follicular carcinoma, partially due to geographic differences in the frequency of this neoplasm. It was reinterpreted and termed poorly differentiated “insular” thyroid carcinoma by Carcangiu et al in 1984. The term insular was used to describe these tumors because the cellular appearance was similar to that seen in the insular type of carcinoid tumors. Since this revised description in 1984, over 200 cases of ITC have been described in the literature.

Pathology

The morphologic appearance of this tumor is similar from case to case. Macroscopic features include a solid, grayish-white tumor with multiple foci of necrosis. They usually display an invasive margin, they tend to be more than 4 cm in size, and they can be either single or multinodular. The microscopic features as described by Carcangiu et al3 include solid clusters “nests” of tumor cells containing a variable number of follicles, often sharply separated by artifactually created clefts. This is the predominant growth pattern. This picture is typical for carcinoid and pancreatic endocrine tumors, which are referred to as insular (Fig 2). Other critical features are small size and uniformity of tumor cells, variable but consistent mitotic activity, necrosis, and capsular and vascular invasion that sometimes leads to the formation of peritheliomatous structures. The peritheliomatous structures refer to the insulæ surrounding the large blood vessels, which have been spared from necrosis.

Preoperative fine-needle aspiration biopsy (FNAB) can be helpful in planning treatment options and patient management. Pietribiasi et al33 reviewed 6 cases of ITC with preoperative FNAB. They assessed cytologic features and compared them with the final histologic specimen. They consistently found high cellularity, necrotic background, low-grade atypia, trabecular and/or clusters, microfollicles, cytoplasmic vacuoles containing thyroglobulin (TG), and nuclear inclusions. These features were not uniform. This is consistent with the histologic heterogeneity seen in these tumors. The authors concluded that FNAB could provide a suggestive but not definitive preoperative diagnosis of ITC.

Immunohistochemical staining is an invaluable tool in diagnosing and understanding the pathophysiology of thyroid tumors. It confirms that ITC is of follicular cell origin by staining positive for TG and thyroid transcription factor 1 (TTF-1). ATC does not stain positive for TG.21 Immunohistochemical staining for p53 mutation also can be helpful in determining tumor progression. WDTC does not usually stain for p53 mutation, whereas staining varies between 0% and 38% in ITC and is >70% in ATC.25,27,34 Furthermore, the presence of well-differentiated and/or anaplastic components within ITC has been frequently reported.25,34 In one series, concomitant WDTCs were noted in 59% of patients with ITC.25 These observations lend support to the hypothesis that ITC represents an intermediate entity in the dedifferentiation of WDTC to ATC. Immunohistochemical staining for calcitonin, chromogranin, and carcinoembryonic antigen is negative in ITC. These stains, along with the distinct cellular features, can be helpful not only in narrowing the differential diagnosis, but also in ruling out entities such as medullary thyroid cancer.

Other (Large Cell)

This small group of PDTCs represents tumors that have a variable architecture consistent with intermediate differentiation. Unlike aggressive variants of papillary thyroid carcinoma, these tumors do not retain the usual...
morphologic characteristic formation of papillary structures, thereby making this a poorly differentiated tumor entity. Histologically, these tumors are similar to ITC in that they also display increased mitotic activity, necrosis, and capsular and vascular invasion, and they stain positive for TG. These tumors are unlike ITC in that they can have a variable architecture (follicular, solid, trabecular, papillary) with a minor insular component. \(^{21}\) Furthermore, the tumor cells are larger and have variable cytology when compared to ITC (Table 1). Clinically, these patients behave like patients with ITC, with similar overall survival; however, ITC tends to recur more frequently in patients.\(^{21}\)

Clinical Characteristics

PDTCs are tumors of intermediate biological aggressiveness, consistent with their intermediate differentiation. They account for up to 10% of all thyroid cancers. This may be inaccurate due to inconsistent definitions of PDTC used by different authors. PDTC has a higher incidence in Europe than in the United States and the male-to-female ratio is greater than 1:2.\(^{14,35}\)

We recently reviewed our experience and compared the clinical characteristics of WDTC, PDTC, and ATC.\(^{36}\) Our results were consistent with others in that PDTC displayed clinical characteristics of intermediate aggressive behavior when compared to WDTC and ATC (Table 2). Whether the presence of a minor component of PDTC worsens the prognosis of WDTC is an area of further investigation. Van den Brekel et al\(^{29}\) found that the insular component within a WDTC was not associated with a poor prognosis, but the follow-up was only 2 years.\(^{29}\) Ashfaq et al\(^{31}\) found that the insular component correlated with older age, and using multivariate analysis, only age and stage were prognostic. However, Pilotti et al\(^{7}\) demonstrated the prognostic impact of differentiation on recurrence and death. Decaussin et al\(^{37}\) found that the presence of an insular component was an independent poor prognostic factor that must be carefully searched for, in the background of a WDTC, since it could predict a worse prognosis. They also reported age, extrathyroidal extension, and vascular invasion as independent poor prognostic factors.

Treatment

The rarity of this tumor makes it difficult to draw conclusions from the literature as to the best treatment option for PDTC. Surgical management of this entity is the principal treatment approach. Most authors agree that due to the aggressive nature of these tumors, a total thyroidectomy is necessary. With over 50% of PDTCs having regional nodal metastases, central compartment with possible modified radical neck dissection should be considered.\(^{36}\) The use of radioactive iodine (RAI), external-beam radiation therapy (EBRT), or chemotherapy is still controversial.

PDTCs arise from follicular epithelium and thus have the distinct potential to concentrate iodine. Justin et al\(^{38}\) described 5 patients with PDTC, 4 of whom showed postoperative RAI localization and received therapeutic doses. Three of the 4 patients showed extrathyroidal localization, and 1 patient had resolution of metastatic disease. Currently the percentage of PDTCs having sufficient RAI concentration to allow postoperative RAI therapy is unknown. We recently reviewed our experience in treating patients with PDTC. Preliminary results showed that these tumors displayed up to 85% radioavidity. Although prospective evidence for its use and efficacy is not available, most authors advocate the use of RAI and L-thyroxine because these tumors display differentiated epithelial function with aggressive behavior, with high rates of regional and distant metastases.

The evidence for and against a role for adjuvant EBRT in PDTC is exclusively retrospective in nature, with varying criteria for patient selection that results in contradictory conclusions. EBRT is given as a local therapy to reduce the risk of local relapse; no improve-

<table>
<thead>
<tr>
<th>Clinical Factor</th>
<th>WDTC (n = 15)</th>
<th>PDTC (n = 12)</th>
<th>ATC (n = 15)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex</td>
<td>6 (40%)</td>
<td>9 (75%)</td>
<td>9 (60%)</td>
<td>.1</td>
</tr>
<tr>
<td>Age <45 years</td>
<td>4 (27%)</td>
<td>0 (0%)</td>
<td>1 (7%)</td>
<td>.05</td>
</tr>
<tr>
<td>Extrathyroidal extension</td>
<td>5 (33%)</td>
<td>8 (73%)</td>
<td>15 (100%)</td>
<td><.0001</td>
</tr>
<tr>
<td>Tumor size >4 cm</td>
<td>2 (13%)</td>
<td>8 (73%)</td>
<td>9 (69%)</td>
<td>.0001</td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td>7 (47%)</td>
<td>7 (64%)</td>
<td>15 (100%)</td>
<td>.0007</td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>0 (0%)</td>
<td>6 (50%)</td>
<td>13 (87%)</td>
<td><.0001</td>
</tr>
<tr>
<td>5-year disease-free survival</td>
<td>91%</td>
<td>51%</td>
<td>0%</td>
<td><.0001</td>
</tr>
<tr>
<td>5-year cause-specific survival</td>
<td>100%</td>
<td>70%</td>
<td>0%</td>
<td><.0001</td>
</tr>
<tr>
<td>Overall survival</td>
<td>100%</td>
<td>70%</td>
<td>0%</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Reprinted from *Am J Pathol* 2002;161:1549-1556 with permission from the American Society for Investigative Pathology.
localized occult disease in 71% of these patients, with an elevated TG. PET scans following surgery and RAI ablation on 37 patients with thyroid lesions.41 Wang et al42 performed PET scans following surgery and RAI ablation on 37 patients with WDTC who had negative diagnostic RAI whole body scans during follow-up but an elevated TG. PET scans localized occult disease in 71% of these patients, with a positive predictive value of 92% and a negative predictive value of 93% and changing the clinical management in 19 of the 37 patients. Benign thyroid carcinoma and WDTC retain FDG poorly, whereas more malignant types (PDTC) appear to have a higher uptake of FDG. Further studies in 125 patients over 41 months found that the total volume of FDG-avid disease correlated with prognosis and was the strongest single risk factor predicting survival. PET scans serve as an excellent localization and prognostic study in patients with PDTC, who often have negative RAI scans and elevated TG levels.42

Anaplastic Thyroid Cancer

ATC is the most aggressive and lethal form of thyroid cancer. Fortunately, it accounts for only 1% to 2% of all thyroid tumors.45 ATC portends a dismal prognosis, with a median survival of 4 to 12 months from the time of diagnosis.44-47 Long-term survivors are so rare that the diagnosis is questioned in reports describing 5-year survival rates.48 The incidence of ATC has steadily decreased over the past few decades,49 although the reason for this decline is not completely understood, and several factors may be involved. Some authors suggest that new diagnostic techniques can help distinguish previously described cases of ATC from lymphoma and medullary thyroid carcinoma.50-52 Other authors have postulated that since ATC is more common in iodine-deficient areas, the decline could be due to iodine prophylaxis and improved socioeconomic status.53,54 A recent Swedish study, however, did not show any change in the incidence of ATC with the addition of iodine to their food supply.54 ATC can occur concurrently with a variety of thyroid disorders, including WDTC.55 Some have suggested that the increased surgical resection of the thyroid gland for a variety of conditions may contribute to the decline in ATC by potentially eliminating the transformation of WDTC to ATC.56 Despite this decline, ATC usually has a fatal outcome, which warrants comprehensive understanding and management of this entity.

Pathology

The pathogenesis of ATC is not completely understood. Whether it arises de novo or from a preexisting WDTC is an area of controversy. We believe that it is probably both. The progression of WDTC to ATC has been well documented at a clinical and molecular level with the loss of the p53 tumor suppressor gene.45,47,55-58 Furthermore, coexistence of WDTC and ATC with zones of transition have been well described. Demeter et al56 found 76% of ATC had previous or concurrent thyroid disorders, with 47% related to WDTC. Some authors have suggested that all ATC contain foci of WDTC and that the inability to detect these foci is due to inadequate sectioning of the specimen.59,61 Papillary thyroid carcinoma is the most common type of thyroid cancer associated with ATC; biologically aggressive variants such as tall cell are more common.62 Foci of PDTC are also common in ATC.25 Recent genetic studies have identified the BRAF mutation as the most common mutation leading to the formation of papillary thyroid cancer.63-68 Several studies have now shown that some ATCs may be derived from BRAF-mutated papillary thyroid cancer, and targeted expression of BRAF in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation.69,70 This strengthens the theory that WDTC may dedifferentiate to ATC through intermediate forms. Understanding this progression might help identify valuable prognostic factors that can serve as potential therapeutic targets.

Grossly, ATCs are unencapsulated, tan-white, fleshy tumors that infiltrate into the surrounding soft tissues of the neck.
the neck. Microscopically, three histologic patterns are commonly described: spindle, giant cell, and squamoid. There is no prognostic difference in these patterns. All three variants have numerous mitotic figures, with large areas of necrosis, hemorrhage, and vascular invasion. Unlike PDTC, these tumors often display p53 mutations and do not stain for TG. Anaplastic cells typically do not have thyrotropin receptors, do not transport iodine, and do not produce TG.

The prognostic impact of the presence of small foci of ATC in WDTC has not been well studied. Some studies have reported improved outcomes in patients with only small foci of ATC; however, others report the same poor outcome as patients with large, rapidly growing tumors. As with PDTC, more aggressive therapy may be warranted in patients with WDTC containing anaplastic foci.

Diagnosis

The diagnosis of ATC is usually suspected on clinical examination and confirmed by FNAB or core biopsy. FNAB has been shown to be accurate in 90% of patients with ATC. Core biopsy is useful in narrowing the differential diagnosis and confirming ATC. Open biopsy can practically be eliminated; it is indicated only when clinical suspicion remains high and when FNAB and core biopsy are inadequate. Failure to obtain a diagnosis on FNAB or core biopsy may be secondary to sampling error or increased areas of necrosis, hemorrhage, or fibrosis.

ATC has been confused with lymphoma and poorly differentiated medullary thyroid carcinoma. These tumors, previously classified as small-cell ATC, carry a better prognosis and might account for the high survival reported in some ATC series. For these reasons, both lymphoma and poorly differentiated medullary thyroid carcinoma need to be distinguished from ATC. A detailed history may help raise the suspicion of lymphoma (i.e., Hashimoto’s thyroiditis, female gender). Core biopsies with immunohistochemical staining and flow cytometry analysis are valuable in this setting. Lymphomas stain for leukocyte-common antigen and do not have the marked cellular pleomorphism of ATC. When considering the diagnosis of medullary thyroid cancer, a detailed family history is critical. A genetic workup looking for RET protooncogene mutations might be warranted in this setting. Medullary thyroid carcinoma can be distinguished from ATC by staining specifically for calcitonin.

Preoperative imaging is helpful in both staging and treatment planning. A thyroid scan is of no value since ATC does not take up RAI. Computed tomography scans and magnetic resonance imaging are useful in defining the local extent of disease and identifying distant metastases. PET scans are also useful in detecting distant disease since ATC is highly metabolic.

Clinical Characteristics

The peak incidence of ATC occurs in the 6th to 7th decade of life. The mean age at diagnosis is 55 to 65 years. Women comprise 55% to 77% of patients with ATC. Although some series report incidentally discovered ATC in a thyroid nodule, most patients present with a rapidly growing, painful, low anterior neck mass that is often firm and fixed to underlying structures. The mean size of the mass at examination is 8 cm, ranging from 3 cm to 20 cm. Most patients demonstrate local compressive symptoms including dysphagia, dysphonia, stridor, dyspnea, and neck pain and tenderness (Fig 3). Regional nodal metastases and vocal cord paralysis are seen in up to 40% and 30%, respectively, of the patients with ATC. Over 70% of patients with ATC have direct invasion of surrounding tissues, such as fat, trachea, muscle, esophagus, and larynx. Systemic metastases occur in up to 75% of
patients, with lung being the most common site (80%), followed by bone (6% to 15%) and brain (5% to 13%). Despite the high rate of synchronous metastases, death is usually related to extensive local disease with ultimate airway obstruction.

Treatment

Surgery: The role of surgery in ATC, whether it is removal of all gross disease or palliation, remains controversial. Patients often present at an advanced stage, making curative surgical resection not feasible. Most studies find that neither the extent of surgery nor the completeness of resection has a significant effect on survival. Some studies suggest that in a select subset of patients with localized disease, survival can be improved by achieving complete resection of all gross disease. The incidence of regional metastases is high, and neck dissection should be performed for clinically evident disease. De Crevoisier et al recently reported high long-term survival in patients receiving radiotherapy and chemotherapy after complete gross removal of all tumor. The number of these cases is usually small. A recent consensus on the treatment of ATC suggests that total thyroidectomy is justified if cervical and mediastinal disease can be resected with limited morbidity. Resection of vital structures, such as the larynx, pharynx, and esophagus, should be avoided.

One of the central issues in the management of ATC is palliation. Palliative management is meant to prevent death from asphyxiation. Securing a safe airway is a critical component of this effort. Airway management may be elective or emergent, depending on the patient’s presentation. Airway obstruction occurs by one of three mechanisms: external compression of the trachea, intraluminal tumor extension, and bilateral vocal cord paralysis. External compression of the trachea is the most common cause of airway impairment in ATC. Patients with either stridor or rapid tumor progression often require intervention.

Fig 4. — Algorithm for managing anaplastic thyroid cancer.
growth should be considered for tracheostomy since further airway compromise can be expected. Computed tomography scans should be obtained to determine the extent of airway compromise and presence of intraluminal tumor. The patient should be taken to the operating room for secure airway management prior to performing the tracheostomy. Preoperative sedation should be avoided and the patient should be intubated under direct vision or fiberoptically. Once the airway is secured, the tracheostomy can be performed under more controlled conditions. An extended-length tracheostomy tube is often necessary. In an emergent setting, a cricothyrotomy can be useful. A prophylactic tracheostomy is often difficult to perform and does not improve survival. It can be associated with increased morbidity due to healing problems and tumor fungation, and it might delay radiotherapy. A comprehensive discussion with the patient and family members is necessary to address the patient’s needs appropriately.

Radiotherapy: Achieving local control is important since death from ATC is usually a consequence of uncontrolled local disease. The indications for EBRT range from providing palliation to improving survival. It is used either alone or in combination with surgery and/or chemotherapy. Although ATC is relatively radioresistant, some studies have shown palliative local control in 68% to 80% of patients. The timing, dose, and mode of delivery of EBRT remain controversial. Some investigators have tried hyperfractionated radiotherapy to keep up with the rapid doubling times of ATC. The efficacy of EBRT needs to be balanced with its toxicity. Reported complications include pharyngoesophagitis, tracheitis, and myelopathy. Patients undergoing EBRT spend a significant portion of their remaining life coping with the related morbidity. The effect of EBRT is limited, and most patients progress and ultimately die of their disease. In select cases, EBRT in combination with surgery and/or chemotherapy can improve short-term survival and provide some palliation.

Chemotherapy: Chemotherapy plays an important role in the management of ATC since the majority of patients present with or develop distant metastases. Most series studying the effects of chemotherapeutic agents on ATC have been unsuccessful in altering the fatal outcome of this disease. Doxorubicin is the most frequently used drug. Monotherapy with doxorubicin demonstrated a response rate of approximately 20% with no evidence of a complete response. Combination therapy with cisplatin or bleomycin demonstrated little improvement in the clinical response. The recent addition of paclitaxel showed some improvement in response but did not alter the fatal outcome. The main limitation of all the combination therapies was drug toxicity.

Multimodality Therapy: The rationale of combining treatment modalities stems from the failure of any one individual therapy. EBRT combined with surgery can improve local control, and chemotherapy combined with EBRT can increase the radiosensitivity of ATC. Controversy persists over the timing of chemoradiation in relation to surgery. Several authors believe that administering EBRT postoperatively provides a theoretical advantage by allowing radiation to treat a smaller tumor burden. Others have used the effects of radiation and chemotherapy preoperatively to allow for the potential resection of the tumor. A recent study suggested that primary chemoradiation followed by surgery had a positive impact on short-term survival. Despite the variable sequence of treatment, multimodality regimens currently offer the best hope for patients with ATC. Fig 4 represents our management of patients with ATC.

Future Directions

ATC remains one of the deadliest of human malignancies. Novel treatment strategies are necessary if we are to make any progress in treating ATC. Promising future directives include tumor suppressor gene therapy, induction of cell cycle arrest, and selective inhibition of certain proteins, thus inducing apoptosis. Blagosklonny et al showed that adenovirus-mediated p53 tumor suppressor gene therapy increased the in vitro chemosensitivity of ATC to doxorubicin. Nagayama et al showed similar results in vivo. Studies using bone morphogenetic protein (BMP-7) and bovine seminal ribonuclease have shown efficacy in treating ATC in vitro and in vivo. Several ongoing clinical trials are using vascular and growth factor-targeted therapies. Agents such as imatinib and combretastatin A4 phosphate are currently being used on protocol. More information regarding these and other trials can be found at www.clinicaltrials.gov. These studies hold promise for improved outcomes and help guide investigators in the search for better treatment strategies for patients with ATC.

Conclusions

Although PDTC and ATC make up a rare group of tumors, they account for a significant portion of the morbidity and mortality associated with thyroid cancer. It is important for clinicians to be able to recognize and differentiate these entities. Both of these tumors are more aggressive than WDTC. They have distinctive clinicopathologic features, and recognition of these histologic variants is important for appropriate management of these tumors. Surgery remains the mainstay of treatment for PDTC, whereas treatment for ATC is not so clear. Multimodality therapy is usually required to treat both of these rare tumors. Current investigations hold promise for better therapies in the future.
References

42. Carcangiu ML, Steeper T, Zampi G, et al. Anaplastic thyroid carci-
77. Aim KB. Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid. 1998;8:715-726.