diagnosis resulting from better skin screening. It is clear that sun exposure remains one of the most important risk factors in developing melanoma. Analysis has shown that the frequency of sunburns, geographic latitude, and age of exposure all play a part in lifetime melanoma presentation.3,4 In a recent meta-analysis, Gandini et al5 found a possible positive correlation between an individual’s number of nevi and the overall risk of melanoma. Other major risk factors include pale skin, blue or green eyes, fair or freckled complexion, blond or reddish hair, and inability to tan.6,7

Sites of Origin

Anatomic cutaneous locations in the head and neck correlate with the areas of greatest sun exposure. Face,
scalp, neck, and external ear are the leading sites for melanoma. Of these sites, patients with scalp melanoma have been shown to exhibit poorer overall survival. The rich regional lymphatics of the head and neck play an integral part in staging and the overall prognosis for an individual melanoma patient (Figure).

Mucosal melanomas in the head and neck are mainly found in the sinonasal cavity or the oral cavity. Despite better diagnostic imaging and surveillance, mucosal melanomas generally exhibit poorer survival rates than cutaneous sites. Postoperative radiation therapy has shown promise in locoregional tumor control but has yet to show any benefit for overall survival. Although still experimental, the use of biochemotherapy may have a promising role in a multimodality approach to mucosal melanomas.

Types of Melanoma

The appearance and growth of melanoma differ depending on the morphologic type. Table 1 shows the incidence and features of six types of melanoma.

Superficial spreading melanomas are the most common type. They are typified by an initial radial (spreading) growth phase with eventual development of a vertical growth phase. Superficial spreading melanoma is frequently associated with a nevus and often occurs in younger patients.

Nodular melanomas are the next most common type. These exhibit vertical growth from their onset.

Lentigo maligna melanomas are characterized by a prolonged radial growth phase. They tend to start as a slow-growing, flat patch in sun-exposed areas (often the face and neck). They have a proclivity for the dermal-epidermal junction and tend to follow hair follicles.

Acral lentiginous melanomas are characteristically located on the palms or soles. Not all such lesions are acral lentiginous; however, they have a defined histologic appearance.

Desmoplastic melanomas can be seen in association with pre-existing melanocytic lesions and can more frequently be amelanotic, making their diagnosis more difficult. They tend to be characterized by infrequent metastasis with a higher local recurrence rate, as well as more frequent perineural involvement.

Mucosal melanomas most frequently present in the nose and/or sinuses, followed by the oral cavity and nasopharynx. They are rare lesions but have a poor prognosis. Because of their development in hidden, clinically silent areas, diagnosis often occurs late, requiring more radical treatment and contributing to the poorer prognosis.

Staging

In 2002, the American Joint Council on Cancer (AJCC) revised the melanoma staging system last modified in 1997 using a database of more than 17,000 patients.
Multiple features of the primary tumor and subsequent nodal status were added to better stratify and stage new melanoma patients (Table 2). In the past, Breslow depth of invasion has been shown to have prognostic significance, as has Clark level of invasion. In the new system, Breslow depth plays a more vital role, while Clark level is de-emphasized (relevant only for T1 lesions). Other changes include the presence or absence of tumor ulceration, as well as tumor (T) thickness limits at 1.0-mm, 2.0-mm, and 4.0-mm depth for defining T stage. Stages I and II were confined to clinical staging, while stages III and IV used pathologic information from the nodes to define staging. Where the 1997 system used the size of nodal metastases to judge prognosis, new data have shown that the number of metastatic nodes is more relevant. The new system reflects that relevance by basing the N (nodal) stage on number of nodes as follows: 1 vs 2-3 vs ≥4 metastatic nodes. In-transit metastases, which were grouped with the T stage in the 1997 system, are now included with the N staging. In general, in-transit metastases have been recognized to portend a poorer prognosis, which is reflected in the new system. Distant metastases are now grouped into one of three groups: M1a (including subcutaneous nodules/distant nodes), M1b (confined to lung metastases), and M1c (for all other visceral sites). Elevated lactate dehydrogenase (LDH) serum level also is associated with poor prognosis, and patients with distant metastases and increased LDH are stage M1c regardless of site of metastasis.

Table 2. — Melanoma TNM Classification

<table>
<thead>
<tr>
<th>Primary Tumor (T)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed (eg, shave biopsy or regressed melanoma)</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis</td>
<td>Melanoma in situ</td>
</tr>
<tr>
<td>T1</td>
<td>Melanoma ≤ 1.0 mm in thickness with or without ulceration</td>
</tr>
<tr>
<td>T1a</td>
<td>Melanoma ≤ 1.0 mm in thickness and level II or III, no ulceration</td>
</tr>
<tr>
<td>T1b</td>
<td>Melanoma ≤ 1.0 mm in thickness and level IV or V or with ulceration</td>
</tr>
<tr>
<td>T2</td>
<td>Melanoma 1.01-2 mm in thickness with or without ulceration</td>
</tr>
<tr>
<td>T2a</td>
<td>Melanoma 1.01-2.0 mm in thickness, no ulceration</td>
</tr>
<tr>
<td>T2b</td>
<td>Melanoma 1.01-2.0 mm in thickness, with ulceration</td>
</tr>
<tr>
<td>T3</td>
<td>Melanoma 2.01-4 mm in thickness with or without ulceration</td>
</tr>
<tr>
<td>T3a</td>
<td>Melanoma 2.01-4.0 mm in thickness, no ulceration</td>
</tr>
<tr>
<td>T3b</td>
<td>Melanoma 2.01-4.0 mm in thickness, with ulceration</td>
</tr>
<tr>
<td>T4</td>
<td>Melanoma greater than 4.0 mm in thickness with or without ulceration</td>
</tr>
<tr>
<td>T4a</td>
<td>Melanoma > 4.0 mm in thickness, no ulceration</td>
</tr>
<tr>
<td>T4b</td>
<td>Melanoma > 4.0 mm in thickness, with ulceration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis in one lymph node</td>
</tr>
<tr>
<td>N1a</td>
<td>Clinically occult (microscopic) metastasis</td>
</tr>
<tr>
<td>N1b</td>
<td>Clinically apparent (macroscopic) metastasis</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis in two to three regional nodes or intra-lymphatic regional metastasis without nodal metastases</td>
</tr>
<tr>
<td>N2a</td>
<td>Clinically occult (microscopic) metastasis</td>
</tr>
<tr>
<td>N2b</td>
<td>Clinically apparent (macroscopic) metastasis</td>
</tr>
<tr>
<td>N2c</td>
<td>Satellite or in-transit metastasis without nodal metastasis</td>
</tr>
<tr>
<td>N3</td>
<td>Metastasis in four or more regional nodes, or matted metastatic nodes, or in-transit metastasis or satellite(s) with metastasis in regional node(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
<tr>
<td>M1a</td>
<td>Metastasis to skin, subcutaneous tissues or distant lymph nodes</td>
</tr>
<tr>
<td>M1b</td>
<td>Metastasis to lung</td>
</tr>
<tr>
<td>M1c</td>
<td>Metastasis to all other visceral sites or distant metastasis at any site associated with an elevated serum lactic dehydrogenase (LDH)</td>
</tr>
</tbody>
</table>

Evaluation and Treatment

Suspicious lesions are defined by the ABCD(E) criteria. This acronym denotes asymmetry, border irregularity, color variegation, diameter greater than 6 mm, and evolution of the lesion. This last criterion, which is a relatively recent addition, emphasizes monitoring of benign lesions to evaluate change over time. For suspicious lesions, a full thickness biopsy is crucial for adequate diagnosis of lesion depth and invasion.

Stage-appropriate treatment of head and neck melanoma is paramount for achieving good outcomes. The AJCC staging system for cutaneous melanoma is the standard. Treatment of melanoma in situ is typically resection with 5-mm margins. Stage I disease is also treated typically with resection alone but with 1-cm margins. For T2a N0 M0 disease (stage 1B), because of depth of invasion greater than 1 mm, sentinel lymph node biopsy is also recommended. For stage II disease, wide excision of the primary lesion with 2-cm margins and sentinel lymph node biopsy is recommended. Regional node dissection is performed if positive nodes are identified. Stage III disease is treated with wide excision of the primary with 2-cm margins and regional node dissection. Consideration of postoperative radiation treatment is undertaken, and systemic chemotherapy usually is recommended. At our institute, treatment for stage IV disease is individualized and usually is coordinated by a medical oncologist through the Cutaneous Oncology Tumor Board. In addition to more traditional chemotherapy, interferon, interleukins, vaccine therapy, and other forms of biochemotherapy are commonly used and hold promise for the future. A discussion of chemotherapy is beyond the scope of this article and is covered in more detail elsewhere in this issue.

It is important to emphasize that these are treatment guidelines. Some controversy exists in a number of areas. In terms of excision of the primary site, thin melanoma
margins are generally accepted to be 1 cm. For melanomas greater than 2 mm in thickness, 2-cm margins are the norm. However, Krown and Chapman noted that the ideal margin width for these deeper lesions has not been adequately studied. More information regarding current excision margin recommendations is available, please see the review on the subject by Lens et al. In the head and neck regions, adequate margins may not be possible or advisable due to cosmetic or functional concerns. For example, centrally located thick eyelid melanomas would normally be treated with 2-cm margins, thus requiring complete excision of the eyelid and resulting in significant reconstructive issues and risk of blindness or a non-functional eye. Similar concerns exist around the mouth, nose, and ears. In such cases, narrower margins are necessary, likely resulting in an increase in treatment failure but preventing functional and cosmetic problems that are associated with severe loss of quality of life. The decision to utilize narrower margins than has been shown to be effective is never made lightly and involves thorough discussion with the patient to determine the best option for each individual.

Radiation therapy also has been controversial in the past due to the fact that the radiosensitivity of melanoma was at least considered questionable. This is changing as more recent data becomes available. Adjuvant radiation therapy for neck disease has been shown to be beneficial for patients with aggressive disease. Extracapsular extension, large nodal size, numerous (greater than 4) nodes involved, and recurrent disease are generally considered indications for adjuvant radiation therapy, and some argue that all patients with lymph node involvement should receive adjuvant radiation therapy. There are also data that support radiation treatment alone for regional disease control in head and neck melanoma, although no direct comparison of radiation vs surgical treatment has been studied.

Another controversial issue involves the role of sentinel node biopsy and nodal (usually neck) dissection in the treatment of head and neck cutaneous melanoma. This issue deserves greater examination in separate subsections.

Lymphoscintigraphy With Sentinel Node Biopsy

In most high-volume academic centers that treat patients with melanoma, lymphoscintigraphy with sentinel node biopsy (LSNB) has become the standard of care for identifying occult regional metastases in at-risk, low-stage lesions. As stated above, this topic warrants special consideration in the head and neck. Methodology is described elsewhere.

Because of the varied drainage patterns and complex anatomy of the region with subsequent risk to cranial nerves and major blood vessels, successful LSNB is technically challenging. Dissection for intraparotid lymph nodes, for example, puts the facial nerve at risk. Injury to the facial nerve is associated with significant cosmetic and functional problems including chewing and eating difficulties, drooling, marked facial asymmetry, loss of facial expressions, epiphora, eye pain, vision obstruction, corneal damage, and even blindness. This has led to considerations for parotidectomy with dissection and preservation of the facial nerve, an arguably safer procedure, for patients with sentinel node involvement in the parotid. In cases where mapping has identified two or more parotid nodes as sentinel, superficial parotidectomy is used at our institute to remove the at-risk nodes while minimizing the risk of facial nerve injury. There also tends to be a higher number of sentinel nodes identified in head and neck tumors, further increasing risk of morbidity. Dissection through small incisions for individual nodes in the head and neck can be time-consuming and risky since the nodes are located primarily near the carotid sheath structures and cranial nerves. When more nodes need to be located, there is a greater risk of injury. Multiple incisions are usually necessary when multiple nodes are sentinel, which increases the number of visible scars on the head and neck. As the Sunbelt Melanoma Trial has confirmed, however, LSNB accuracy and safety for head and neck lesions is acceptable and compares with that of truncal and extremity lesions. Although there are concerns with altered draining patterns, LSNB is generally considered reasonable after excision of the primary site as long as flap reconstruction has not been performed (ie, primary closure or skin graft was used to reconstruct the primary site). The preferred method, however, is lymphoscintigraphy prior to but during the same surgery as wide excision of the primary site. Data have confirmed the utility of SNLB as a staging procedure, but its therapeutic role is less clear. Removal of sentinel nodes and dissection of the nodal basins in positive cases has been shown to improve locoregional recurrence rates but has not positively affected survival. Studies are currently underway to examine this issue further.

Neck Dissection

As already noted, the therapeutic value of regional node dissection in terms of prolonged survival is questionable. Because of this fact, as well as efficacy data from the Sydney Melanoma Unit of various types of neck dissection, selective dissections are recommended where adequate disease removal (eg, clinically negative neck, non-fixed disease, small nodes) is possible using that technique. Sacrifice of obviously involved structures is indicated otherwise. Radical neck dissection, unless indicated because of disease extent, should be avoided due to unnecessary morbidity. Because of the high risk of occult involved nodes, neck dissection should accompany parotidectomy for positive parotid disease. Dissection extent in terms of at-risk nodal basins depends on the primary site. Lesions of the upper neck, face, and scalp anterior to the ear usually require dissection of the parotid and levels I–IV of the neck. Lesions of the upper neck and scalp posterior to the ear usually require dis-
section of levels II–V of the neck. Lesions of the inferior neck usually require dissection of levels III–V. Lesions of the ear and of the scalp and neck at the level of the ear drain to all areas of the neck and require parotid and complete (levels I–V) neck dissections.

According to data from the Sydney Melanoma Unit, these drainage patterns are consistent in 92% of cases. This leaves a significant 8% incidence of drainage to nodal basins outside those listed as typical by primary site. For this reason, we have had a tendency to perform more extensive dissection in cases of more aggressive disease or in primaries that involve more than one of the arbitrarily defined regions listed above. In cases where sentinel node sampling has revealed positive nodes outside of the standard drainage patterns defined above, all involved nodal basins should be dissected. In cases of T3 and T4 lesions associated with risk of lymph involvement greater than 20% (for T3) and 50%–50% (for T4), we have used LSNB to direct the need for regional node dissection, performing dissection only in positive cases. Some argue for node dissection in these cases due to the high risk of nodal involvement. This debate continues because, as stated above, therapeutic nodal dissection has not been definitively shown to have a survival benefit; it improves locoregional control. Adding further complexity to this debate, data show that recurrence rates in the neck after neck dissection are higher than those in the axillary or inguinal areas. This fact has been used to support both sides — one side argues that the more aggressive disease requires more aggressive treatment and thus favors dissection, while the other argues that dissection is less likely to matter and therefore morbidity should be decreased by avoiding dissection when the clinical situation does not clearly show the need (eg, in negative LSNB). Further studies are necessary to answer this question.

Considerations in Reconstruction of Head and Neck Melanoma Defects

Because of the need for permanent section pathology review with its attendant time lapse for staining, traditional initial reconstructive efforts have been temporizing, in the form of secondary intention healing, primary closure, or skin grafts. These options generally are not the best options for restoring function and cosmesis for head and neck defects in visible regions. Tissue contraction from skin grafting or healing by secondary intention and distortion from primary closure is not well tolerated near or on the nose, mouth/lips, eyelids, and eyebrows and can cause dysfunction and/or cosmetic deformity in these areas. In cases distant from these sites, healing by secondary intention, primary closure, and/or skin grafting is generally sufficient for defects of less than 3 cm in diameter. Unfortunately, most melanoma resection defects are larger (greater than 3 cm in diameter) because of the need for at least 1–2 cm margins to perform oncologically adequate tumor removal. Secondary, more appropriate closures in the form of locoregional or free flaps can be performed once negative margin status is achieved; these have been shown to improve functional and cosmetic outcomes.

For lesions where improved functional and cosmetic outcomes are expected to require flap reconstruction, delayed wound closure is recommended after negative margin status has been achieved. Moffitt Cancer Center has the capability for rapid staining and pathologist review within 24 hours, allowing for wound closure in 1 to 2 days. For patients who cannot or do not want to undergo another procedure that rapidly, skin homografts or allografts are recommended to provide a safe wound that can heal rapidly. Functional and/or cosmetic deformities from the reconstruction can then be addressed with secondarily as required.

Conclusions

Head and neck melanoma is a complex disease, especially in treatment considerations. In general, it carries a well-recognized poorer prognosis. We therefore have had a lower threshold for more aggressive treatment where risk of morbidity is still minimal. The complex anatomy of the region warrants special considerations and further complicates therapeutic decision-making. As in any area of medicine, thorough study and individualized treatment based on specific patient needs yield optimal outcomes.

References

